读后感 · 读后感范文 · 逻辑思维读后感1000字

逻辑思维读后感1000字

《数学思维方法》读后感1000字。

书是我们的精神食粮,读书是我们的兴趣喜好,读好书则是我们做人的行动指南。人在阅读的过程中,知识与能力在同步增长。阅读作品后,我被作者描绘书写的情景吸引,印象深刻,很多优秀的读后感,就来自于作者及时地将自己的阅读心得记录下来,怎么才能用文字的方式把读后感记录下呢?也许下面的“《数学思维方法》读后感1000字”正合你意!仅供参考,大家一起来看看吧。

周末在家打开书香中国的网页,看到了《数学思维方法》这本书,顿时被里面生动的案例吸引,如饥似渴的读起来。

如美国数学家哈尔莫斯所说“问题是数学的心脏”,要开展思维,必须由数学问题开始,而一个好的数学问题,可以引出一串数学问题,即形成所谓的问题链。其次,对于数学问题,人们在思考分析的基础上,通过一系列合情合理的方法,会形成对于该问题结论的某种猜想。数学问题在数学思维中具有首要性,由此我们应该对数学问题有个详细的了解。合情推理虽然对于发现数学猜想具有重要作用,但由合情推理得到的数学猜想,毕竟是猜想。而猜想的正确性,则待于严密的数学证明。通过证明得到的数学结论,那就是数学定理。数学的结论性知识,基本上以定义、公里和定理的形式来表达。但这些定理、定义和公理都是数学中的一个个知识点,要把这些知识点串联起来,形成一个知识系统,在数学中有一种特殊的方法,那就是公理化方法。这是数学特有的思维方法。数学建模是运用数学解决实际问题的有效方法,事实上,所谓数学建模就是建立起有关实际问题的相应数学模型,通过对数学模型的研究,达到解决实际问题的目的。因而,数学建模实际上是一个运用数学思维方法解决问题的过程。

分析法、综合法、抽象法和概括法是数学思维方法最基本的方法。数学语言的独特性表现为它是一种独一无二的语言,这是目前世界上唯一的一门描写自然、社会和人类社会中数量关系、空间形式和抽象结构,表达科学思想的世界通用语言。不同母语的数学家,虽然他们的自然语言不同,在许多方面一时难以沟通,但一旦讨论起数学问题,他们就有共同的语言,可以毫无障碍的进行沟通,共同来思维同一个对象。数学思维往往表现为是一种系统的综合性思维,很少有用单一的思维形式来解决问题的。数学又是一门高度严谨的学科,所有的理论都必须经过严格的逻辑论证得到,作为数学活动结果,即数学结论是十分严谨的。从数学本身来看,数学活动主要包括三个方面:数学的发现、论证和应用。于是,数学思维方法应包括数学发现的思维方法、数学论证的思维方法和数学应用的思维方法三的部分。事实上,抽象和概括、分析和综合,既贯穿于数学思维的始终,又是数学思维的实质。

欧几里得在前人工作的基础上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的、严密逻辑体系的《几何原本》。这是世界上第一个公理化系统。

哈尔莫斯在《数学的心脏》中,把数学问题分为平凡问题和深奥问题。所谓平凡的数学问题是指那些接近基本定义的,易懂、易证的数学问题。好数学问题的标准是具有启发性和可发展性。所谓启发性,主要是指数学问题能启发人步步深入,直至问题的解决;即使暂时不能解决,也能让人舍不得放弃;有较强的探究性,能让人有所思也有所得,但又不能立即就把问题彻底解决。而可发展性,实际上是说,由一个数学问题可以发展为多个数学问题,即发展为数学问题链或数学问题群,而不是一个孤立的问题。数学问题的五条基本性质是首要性、数学性、探究性、链锁性和相对性。数学性是数学问题的基本性质,不具有数学性的问题就不是数学问题。例如,七桥问题就是这样的数学问题,在一般人眼中,它只是一个游戏,可在欧拉眼中,它却是个非常好的数学问题。

hdh765.Com更多读后感延伸阅读

《小学数学与数学思想方法》读后感1000字


这个学期,我读了王永春老师的《小学数学与数学思想方法》一书,感觉收获很多,对数学教学又有了一些新的见识。《小学数学与数学思想方法》这本书分成两部分,第一部分是对小学常见的数学思想方法的详细阐述,第二部分是一些教材中数学思想方法案例解读。通过对这本书的阅读,使刚踏上数学工作岗位的新教师对教学中常见的思想方法有了更加明确的认识,具有实践指导意义。我主要对归纳推理这部分内容与大家进行交流。

一、对归纳推理的认识

从特殊到一般的推理方法,即依据一类事物中部分对象的相同性质推出该类事物都具有这种性质的一般性结论的推理方法。归纳法有助于发现并提出问题,进行大胆猜想,数学史上有很多著名的问题都是这样被提出来的,比如哥德巴赫猜想、费马猜想、地图的四色猜想等。

二、归纳推理的应用

归纳法作为数学发现的一种重要方法,在小学数学的探究学习和再创造学习中应用非常广泛。尤其是小学数学,一些公式、法则、性质、规律等的获得往往是通过几个特殊例子归纳的。比如找数列和图形的规律、四则计算法则的总结、运算定律、商不变的规律、小数的性质、分数的基本性质等等。

三、归纳推理的教学

主要体现在(1)法则的归纳,整数的加减乘除的笔算,都是通过几个有限的由易到难的例子,让学生在理解算理和口算的基础上探索计算的方法,最后进行交流和总结,这种法则的得出就是运用了归纳法。如多位数乘一位数。

(2)性质的归纳,商不变的性质、小数的性质、分数的性质、比的性质、比例的性质等,都是通过几个例子,让学生进行探索、交流,最后归纳总结。这学期利用归纳推理学习了分数的性质。

(3)公式的归纳,这学期利用归纳推理学习了长方体和正方体的体积公式。

(4)定律的归纳,引导学生通过计算几组算式来猜想并归纳规律。

(5)规律的归纳。

四、归纳推理的教学案例

以这学期《3的倍数特征》为例。3的倍数特征是在学习2.5的倍数特征之上进行的,在学习2.5的倍数特征时,我已经为学生归纳推理思想进行了渗透,但3的倍数特征相对复杂,因此我设计了一系列的问题引导学生归纳总结,不断给学生的思维织网爬高。

1、在百数表中圈出3的倍数。

2、把不是3的倍数的数去掉,将学生的视线拉进是3的倍数的数中,让学生初步感知。

3、选一组最能说明问题的数,也就是数量最多的一组数,学生的思维逐步被打开,发现个位上的数1-9都出现 过,十位上的数1-9也都出现过,所以和个位、十位自身没有直接的关系。再通过其他几组数的观察研究发现个位和十位上的和可以是3、6、9、12它们都是3的倍数。

4、百数表中还有其他的数,它们不是3的倍数是否有这样的特征?学生举例验证。

5、百数表之外的数呢?举出三位数,四位数甚至更大的数,进一步完善归纳,3的倍数特征是各个数位上的和是3的倍数。

6、深化理解3的倍数特征,设计了拨珠子组数的练习,为什么大家拼的数不同,但都是3的倍数?

这是我读这本书的收获体会,当然书中还有很多内容我还没有读透,需要继续挖掘数学思想方法教学的内涵,提高学生的核心素养。

读后感:《数学思维与小学数学》


读后感:《数学思维与小学数学》

作为一名教师,我深切体会到无论是教学哪一门学问都要对这门学问有比较深入的思考,就像站在高处可以看得到更远的地方,或者是俯瞰能够把美景尽收眼底一样。郑毓信先生说从长远的角度看,要能够不断提高自己的理论素养,开拓视野,增强思维的深刻性。

在小学基础教育中,教学新知识是以例题的内容为教学的起点,对创设出问题情境有着比较高的要求,甚至有问题的情境串出现。我以为这是一种非常好的方式方法,但是在看完这本书之后,我觉得我忽视了一个重要的问题,那就是学会数学思维的首要涵义是学会数学抽象也就是模式化。

数学是模式的科学。这就是指,数学所反映的不只是某一特定事物或现象的量性特征,而是一类事物或现象在量的方面的共同性质。所以我以前纠结于为什么这道题学生会了,但是相似的类型题学生还不会,这下子答案有了,其实是孩子的数学思维已经被忽视了。想象一下这种结果是相当可怕的。

也许写到这里不禁会想到了,为什么我们这么强调情境,到头来却被情境所累,反而效果很差呢,郑先生高屋建瓴地指出帮助学生学会数学抽象的关键:应当超越问题的现实情境过渡到抽象的数学模式。( 去情境化)数学教学必定包括去情景化、去个人化和去时间化。这种理论我第一次听到,但是又觉得有道理,从郑先生的哲学思维分析,可能对数学最根本的内在的本质有着非常深刻的领悟,所以才能达到自己自成一系的数学教学方式。

在此我本着学习的态度,在教学数学的课堂实践中只能慢慢摸索。在这里我们用一些数学的符号来代替文字2024,这样的思维方式比较贴近郑先生所说的去情景化,而且我觉得从直观上来看学生也容易理解一些,今后在对规律的教学中也注重用这种方式培养学生的数学思维。

当然在数学的教学中不仅仅是一种思维存在,还有类比、分类、多角度观察解决问题等等都[纯教育系统范文大全-/]是一种方法,但是郑先生又提出一个应当思考的问题:我们是否应当要求每个学生都学会数学地思维?我觉得这是一种十分理想的效果,但是班级学生的个体差异是存在的,在不同的程度上可以要求部分同学学会数学思维,如果有一天潜能生也能用数学思维解决问题了,那将是数学老师的春天。郑先生提出更高的努力方向:由数学地思维到通过数学学会思维。这虽然要求高,但是却让我们很有信心去继续研究探索!

《小学数学经典教学方法》读后感1000字


2019年1月25日我们在黄州东坡小学召开了余振兴名师工作室年终总结会,在聆听了几位优秀教师的发言后,我感受到自己的不足,在工作室的倡议下,我购买了《小学数学经典教学方法》(钟建林著)一书。可以说我度过了一个充实的寒假。这本书真的不愧经典二字。下面我就粗略的谈谈我的读后感。

钟会长在书中对16种小学数学经典教学方法进行了介绍。对每种教学方法都从方法溯源、关联理论、典型特征、实施策略(或基本模式)、常见变式、典型案例六个方面展开。这16种小学数学经典教学方法让我大开眼界,其中有我们耳熟能详的教学方法,也有我还没有运用过的教学方法,今年开学我准备尝试一番。让我印象最深的是项目教学法和无痕教学法

项目教学法让我想起了2015年去黄梅实验小学听课、学习的体验。当时还没听说过这个名字。黄梅实验小学不光是数学,所有科目都在尝试一种教学方法,就是在教师的指导下,将一个相对独立的项目交由学生自己处理,信息的收集、方案的设计、项目实施及最终评价都由学生自己负责,学生通过该项目的进行,了解并把握整个过程及每一个环节中的基本要求,解决问题,获得发展。

在整个教学过程中,真的是充分的体现了学生是学习的主体。这个教学方法最大的挑战是,每个小组中有学习能力强的,也有学习不太积极的学生,如果一味放手,只会造成两极分化。要想解决这个问题,就要靠老师对项目的精心的设计了,让所有学生都有适合自己的任务。项目教学法以学生的自主性、探索性学习为基础,把教学内容和教学目标巧妙地隐含在一个个任务之中,采用类似科学研究及实践的方法,即教学进程由任务驱动,而不是对教材内容的线性讲解,促进学生主动积极发展。我们三里畈小学的三主四环教学模式,就有一部分教学理念在借鉴项目教学法。在实际教学中确实也取得了很好的效果。总之,项目教学法最显著的特点是改变了以往教师讲,学生听的被动的教学模式,创造了学生主动参与、自主协作、探索创新的新型教学模式。这是我个人最喜欢的教学方法。

还有无痕教学法,这大概就是教书育人的最高境界吧。无痕教育追求在看似无意、无痕的教学情境和行为中,促进学生自然而然、顺其自然地发展。达到这个水平的老师,肯定是大神了。因为这需要你在深入研读课程标准和教材的基础上,准确把握学情,将需要落实的教育教学目标与学生的认知发展规律有效结合,营造自然而然的学习氛围,让学生听你讲课很舒服。还要设计情节和意境自然流畅的教学活动,让学生感觉到好像在玩。最后还要以适切的教学方式方法,引导学生掌握知识、提升能力、发展素养。本书中也说到,看似无痕的教学背后是教师的有心用心和尽心。

无痕教育可以说是在追寻一种最本真的教学境界,是一种教育的美学和哲学境界,是一种对教育本原的追寻。无痕教育法,就是要在尊重和理解孩子的基础上,遵从教育之序,营造自然愉说的学习之境。

书中还介绍了我们经常使用的讨论教学法启发式教学法分层教学法等。不过钟会长对这些教学方法的理解还是有很多经典的细节。除此之外还详细解读了颇有技巧的翻转数学法和反馈教学法。总之这本书很值得大家一看。

数学思维与小学数学读后感(精选范文)


最近读《数学思维与小学数学》(郑毓信着),感触颇深。书中讲到:小学数学,特别是低年级数学教学的一个特殊之处,我们应以数学为素材,也即通过具体数学知识的教学帮助学生学会抽象、类比等一般的思维方法,同时又应当帮助学生超越一般思维走向数学思维,也即初步的领悟到数学思维的特殊性,从而就能在“学会数学的思维”这一方向上迈出坚实的第一步。

读后感大全为您提供更多读后感,希望能够帮助到您。http://m.dhb100.com

平日的教学中,面对老师的提问,若是简单的问题,回应的学生比较多,一旦遇上思考性强、有深度的问题就只有个别同学试探性地举起自己的手,多数同学选择沉默,更有甚者,有时教室里鸦雀无声,真的,学生连大气都不敢出,这是我教四年级上课提问时的情景,每到这时,我的心就开始颤动,课间时还满脸兴奋的孩子怎么到课堂提问时就这幅摸样,我开始寻找答案,原因是他们缺乏思考,日复一日,年复一年,他们的思考能力几乎丧失了。学生的思考来源于何处?答案是老师的启迪和培养。我们做教师的往往都把主要力量用到让学生掌握现成的东西,死记硬背,久而久之,学生从不用思考,慢慢发展到不会思考,最后遇到问题也就不愿意思考了,这就会发生以上的情景。

我们教师在课堂上应做两件事:一,要教给学生一定范围的知识,二要使学生变得越来越聪明。而我们不少教师往往忽视了第二点,认为学生掌握了知识自然就聪明,其实不然,一个好奇的爱专研的和勤奋的学生才是真正意义上的聪明学生。那么这种聪明在于教师的启迪和培养。现在的课堂重视小组合作学习,重视学生动手操作能力,其实这些做法都是在培养学生的思考能力。

今年我带四年级数学,除了每周一节的数学思维训练课外,平时的教学中鼓励和适时引导学生积极、主动的参与知识形成的全过程,并为他们的探究活动创设广阔的思维背景,力求做到:“学生能够独立思考的,教师绝不提示;学生能够独立操作的,教师绝不示范;学生能够独立解决的,教师绝不替代。”这样做我觉得对启发他们的思考有一点作用,有时候我也会泄气,因为学生的答案往往和题目一点关系都没有,我在努力的坚持着.......在我们忙着应付各种考试的时候,请留一点时间让孩子思考。

数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程。教师是学生数学活动的组织者、引导者与参与者,是学生数学智慧的启迪者。智慧的教师眼中,不能只关注学生是否掌握了某个知识,而更应该关注整个教学过程对学生成长的意义以及对学生人生的影响。做一名智慧型教师,着眼于未来,启迪学生思维,培养学生数学智慧,让学生学会学习,促进终身发展。

读后感大全网专业提供免费的读后感范文,希望能够帮助到您。http://m.dhb100.com

读《数学思维树》有感


读《数学思维树》有感

我曾因无法解答一道数学难题而挠头叹息,曾为数学课上回答不出老师的提问而羞愧苦恼,在叹息与苦恼中对数学产生了厌倦与恐惧,而与她渐行渐远。

在一次偶然的机会中,我发现了《数学思维树》这本书。它是由韩博士朴京美用她充满趣味的数学故事与亲切讲述,精心编制的。让我重新发现数学的迷人、可爱之处。

书中,从“生活中的数学”、“艺术中的数学”、“生活中的几何学”、“东方历史中的数学”、“西方历史中的数学”、和“用数学看世界”这六个方面,全面而具体的讲述了在人类文明的发展中,和在我们的日常生活中,数学无处不在,只要我们细心,就会发现其中的乐趣。就在书的开头“恐怖数字11的偶然”一文一下子勾起了我对这本书与数学的浓厚兴趣。

文章中的一段话写道:发生在美国的911恐怖事件与数字11有关说的说法一度增甚为流行,有趣的是,将这起恐怖事件发生月份和日期的数字9、1、1、相加,恰好与事件发生日期11相同。以为准,是第254天,其数字2、5、4之和也正好为11,而恐怖袭击目标——美国世界贸易中心双子塔有两栋110层建筑组成,若将110去掉个位数字0则又为11,且双子塔楼外型酷似11。怎么样,在“世界闻名”的9·11恐怖事件中出现了这么多得11,是不是很令人大跌眼镜啊!

这本书使我发现了生活中处处都充满了数学,懂得了去发现其中的乐趣。更为重要的是,它改变了我对数学的厌倦与恐惧的心态,不再在叹息与苦恼中面对数学,并与她的距离一下子拉近了!

最后,我想说:“拥抱数学吧,拥有属于你自己的数学思维树!


《数学思维养成课》读后感1500字


通读林碧珍老师的《数学思维养成课》,朴实易懂的语言阐述了各种数学思想的知识分布和一些数学思维概念含义的解释。

大家都明白,数学教学实质上是数学思维活动的教学。学习知识和训练思维既有区别,也有着密不可分的内在联系,它们相辅相成的联系他们是在小学数学教学过程中同步进行的。儿童认识事物带有很大的形象性,只要提供较多的具体事例,使他们在思维过程中积累起丰富的感性材料,就可以帮助他们逐步学会抽象出数学概念的方法。因此教师在数学教学的过程中,要着重培养学生的数学思维、观察能力和分析能力等在小学阶段极为重要。

一、让学生主动认知,积极促进学生思维

如果在教学中教师以讲解为主,并能很快得出结论,那么这样学生的能力无从提高。在数学基础知识教学中,应该加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加上学生的年龄较小,生活经验不足,抽象思维能力较差,学习时比较吃力。如果在教学中引导学生主动参与教学活动,在原有的知识基础上建构新的知识,这样做花费时间虽然多一些,但由于是儿童自己思考探索学到的东西,转化为能力很快。瑞士教育家裴斯泰洛齐说:教育的主要任务不是积累知识而是发展思维。

教学《分数大小的比较》一课时,在讲解比较分数的大小时,通常会出现以下几种现象:同分母分数相比较;同分子分数相比较;分母和分子都不同的分数相比较。对于它们的比较方法一般是:同分母,看分子,分子大,分数大;同分子,看分母,分母小,分数大;分母、分子都不同的分数,先通分,变成同分母的分数,再比较大小。在教学中,学生大多都是运用这种方法,但是在解题的过程中,有学生发现了这样一种情况:如由于分母之间存在着倍数与约数的关系,可以不用通分,因为 = ,而 ,所以 。教师给予充分的肯定和表扬,并追问:还有没有不同的比较方法呢?学生经过激烈的讨论与教师的引导,发现了许多方法,如:用单位1去分别减这两个分数,再比较;以 作标准比较两个数的大小;将分子和分母不同的分数化成同分子的分数来比较。最后,教师再让学生讨论哪种方法最简便。

二、以旧带新,积极发展学生思维

新知识是旧知识的引申和发展,学生的认识活动也总是以已有的旧知识和经验为前提。所以,我每次教学新知识的时候尽可能复习以前学过的旧知识。就学生的学习过程来说,某些旧知识是新知识的基础。充分利用已有的知识来搭桥铺路让学生运用知识迁移的规律更好的发展学生的思维。学生通过一题多解的训练能强化知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领。反复进行一题多解、一题多变的训练,帮助学生用已学过的知识来开阔思维,克服自己数学思维的狭窄。

三、精心设计问题,引导学生思维

培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法,教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发学生的思维,最大限度地调动学生学习的积极性。小学生的自控能力较差,他们不善于组织自己的思维活动,往往看到什么就想到什么。学生的思维能力只有在学习中处于兴奋状态,思维处于活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每一位学生的思维活动都激活起来。如我在教学《简单的推理》一课时,设计了这样一个问题:怎么推理的?先确定谁?能确定的先确定,使学生思考有方向。让学生清晰的说出推理的过程,这样通过正确的思维方法,掌握新学习的知识。

四、清晰的表达,推动学生思维

语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头表的训练,是发展学生思维好办法。同样是在简单的推理中,生利用一系列的口头表达来说明一个道理。在学生说理后,师再进行总结。让学生通过自己的讲解来了解题目的意思,收到良好的教学效果。通过这样反复的口头表达训练,既加深了学生对知识的理解,又推动了思维能力的发展。

总之,小学数学教学的目的,不仅仅在于传授知识,要让学生在学习中、了解、理解、掌握、运用数学知识的基础上,掌握好的学习方法。在教学过程中培养学生思维和观察能力、良好的思维品质,这才是全面提高学生素质的需要。

读《数学思维树》有感600字


我曾因无法解答一道数学难题而挠头叹息,曾为数学课上回答不出老师的提问而羞愧苦恼,在叹息与苦恼中对数学产生了厌倦与恐惧,而与她渐行渐远。

在一次偶然的机会中,我发现了《数学思维树》这本书。它是由韩博士朴京美用她充满趣味的数学故事与亲切讲述,精心编制的。让我重新发现数学的迷人、可爱之处。

书中,从“生活中的数学”、“艺术中的数学”、“生活中的几何学”、“东方历史中的数学”、“西方历史中的数学”、和“用数学看世界”这六个方面,全面而具体的讲述了在人类文明的发展中,和在我们的日常生活中,数学无处不在,只要我们细心,就会发现其中的乐趣。就在书的开头“恐怖数字11的偶然”一文一下子勾起了我对这本书与数学的浓厚兴趣。

文章中的一段话写道:发生在美国的911恐怖事件与数字11有关说的说法一度增甚为流行,有趣的是,将这起恐怖事件发生月份和日期的数字9、1、1、相加,恰好与事件发生日期11相同。以为准,是第254天,其数字2、5、4之和也正好为11,而恐怖袭击目标——美国世界贸易中心双子塔有两栋110层建筑组成,若将110去掉个位数字0则又为11,且双子塔楼外型酷似11。怎么样,在“世界闻名”的9·11恐怖事件中出现了这么多得11,是不是很令人大跌眼镜啊!

这本书使我发现了生活中处处都充满了数学,懂得了去发现其中的乐趣。更为重要的是,它改变了我对数学的厌倦与恐惧的心态,不再在叹息与苦恼中面对数学,并与她的距离一下子拉近了!

相信《《数学思维方法》读后感1000字》一文能让您有很多收获!“好读后”是您了解读后感的必备网站,请您收藏hdh765.com。同时,编辑还为您精选准备了逻辑思维读后感1000字专题,希望您能喜欢!